双曲线(Hyperbola)是指与平面上两个定点的距离之差的绝对值为定值的点的轨迹,也可以定义为到定点与定直线的距离之比是一个大于1的常数的点之轨迹.
在平面直角坐标系中,二元二次方程f(x,y)=ax^2+bxy+cy^2+dx+ey+f=0满足以下条件时,其图像为双曲线. 1.a、b、c不都是零. 2.b^2 - 4ac > 0. 3.a^2+b^2=c^2 在高中的解析几何中,学到的是双曲线的中心在原点,图像关于x,y轴对称的情形.这时双曲线的方程退化为:x^2/a^2 - y^2/b^2 = 1.
椭圆是平面上到两定点的距离之和为常值的点之轨迹,也可定义为到定点距离与到定直线间距离之比为常值的点之轨迹.
高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程中的“标准”指的是中心在原点,对称轴为坐标轴. 椭圆的标准方程有两种,取决于焦点所在的坐标轴:F点在X轴
1)焦点在X轴时,标准方程为:x^2/a^2+y^2/b^2=1 (a>b>0) 2)焦点在Y轴时,标准方程为:y^2/a^2+x^2/b^2=1 (a>b>0) 其中a>0,b>0.a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,焦距与长.短半轴的关系:b^2=a^2-c^2,准线方程是x=a^2/c和x=-a^2/c ,c为椭圆的半焦距. 又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n).即 F点在Y轴
标准方程的统一形式. 椭圆的面积是πab.椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ ,y=bsinθ 标准形式的椭圆在(x0,y0)点的切线就是 :xx0/a^2+yy0/b^2=1
椭圆的一般方程
Ax^2+By^2=C(A>0,B>0,且A≠B)
按照经典的定义,从(a,b)到R3中的连续映射就是一条曲线,这相 当于是说:(1.)R3中的曲线是一个一维空间的连续像,因此是一维的.(2.)R3中的曲线可以通过直线做各种扭曲得到.(3.)说参数的某个值,就是说曲线上的一个点,但是反过来不一定,因为我们可以考虑自交的曲线.
基本公式
设正则曲线C的参数方程为r=r(s),s是弧长参数,p(s)是曲线C上参数为s即向径为r(s)的一个定点.Q(s+Δs)为C上邻近p的点,Q沿曲线C趋近于p时,割线pQ的极限 曲线
位置称为曲线C在p点的切线.过p点与切线垂直的平面称为曲线 C在p点的法平面.曲线C在p点的切线及C上邻近点R确定一个平面σ,σ的极限位置称为曲线C在p点的密切平面,它在p点的法线称为曲线C在p点的次法线,曲线C在p点的切线和次法线决定的平面称为曲线C在p点的从切平面.p点的法线称为曲线C在p点的主法线(图2). 曲线 以"·"表示关于弧长参数s的导数,并且设 曲线
那和b(s)=t(s)×n(s)分别是曲线C在p(s)点的切线、主法线和次法线上的单位向量,并且t(s)指向曲线 C的正向.n(s)指向曲线凹入的一方.t(s)、n(s)和b(s)按此顺序构成右手系,且分别称为曲线C在p(s)点的切向量、主法向量和次法向量.{r(s),t(s),n(s),b(s)}称为曲线C在p(s)点的弗雷内标架.曲线 C的每一点都有弗雷内标架.为研究曲线上两个邻近点上弗雷内标架之间的变换关系,要讨论t(s)、n(s)和b(s)关于s的导向量,它们可由标架向量线性表出,这就是下述曲线论的基本公式(弗雷内公式):曲线
式中k(s)和τ(s)分别被称为曲线C在p(s)点的曲率和挠率.曲率 曲率 这是切向量t(s)和t(s+Δs)之间的夹角.故曲率度量了曲线上相邻两点的切向量的夹角关于弧长的变化率.直线的曲率恒为 0.圆周的曲率等于其半径的倒数.当曲线C在p(s)点的曲率k≠0时,在p(s)点的主法线上沿n(s)的正向取点Q,使得pQ=1/k,在p点的密切平面上以Q为中心,1/k为半径的圆称为曲线C在p点的曲率圆或密切圆,Q和1/k分别称为曲率中心和曲率半径.密切圆是过曲线C上p(s)点和邻近两点的圆的极限位置.挠率 挠率 曲线
,它的绝对值 曲线
度量了曲线上邻近两点的次法向量之间的夹角对弧长的变化率.平面曲线是挠率恒为零的曲线.空间曲线如不是落在一平面上,则称为挠曲线. 若p0(s0)点的曲率和挠率均不为零,取p0为原点,曲线的切线、主法线和次法线为坐标轴,在p0附近,曲线可近似地表示为:曲线
所以曲线C在p0点邻近的近似形状.