参数方程x=sint,y=cos2t,在t=6⼀∏处相应的点处的切线方程和法线方程

2024-11-22 17:53:29
推荐回答(1个)
回答1:

x= sint
x(π/6) = 1/2
dx/dt = cost
y=cos2t
y(π/6) = 1/2
dy/dt = -2sin2t
dy/dx = (dy/dt)/(dx/dt) = -2sin2t/ sint
dy/dx | t=π/6 = -2sin(π/3)/ sin(π/6) = -2√3
切线方程 ( 1/2, 1/2)
y-1/2 = -2√3 ( x-1/2)
法线方程( 1/2, 1/2)
y-1/2 = [1/(2√3)] ( x-1/2)
y-1/2 = (√3/6) ( x-1/2)