求解两道微分方程

2024-12-05 16:57:51
推荐回答(2个)
回答1:

(1)求方程(x²+y)dy/dx=xy的通解
解:∵(x²+y)dy/dx=xy
==>(xydx-x²dy)-ydy=0
==>2(xydx-x²dy)/y³-2dy/y²=0 (等式两端同乘2/y³)
==>d(x²/y²)-2dy/y²=0
==>∫d(x²/y²)-2∫dy/y²=0 (积分)
==>x²/y²+2/y=C (C是任意常数)
==>x²+2y=Cy²
∴此方程的通解是x²+2y=Cy²。
(2)求方程dy/dx=-(siny+3x²-1)/(xcosy+2y³)通解
解:∵dy/dx=-(siny+3x²-1)/(xcosy+2y³)
==>(xcosydy+sinydx)+(3x²-1)dx+2y³dy=0
==>d(xsiny)+(3x²-1)dx+2y³dy=0
==>∫d(xsiny)+∫(3x²-1)dx+2∫y³dy=0 (积分)
==>xsiny+x³-x+y^4/2=C/2 (C是任意常数)
==>2xsiny+2x³-2x+y^4=C
∴此方程的通解是2xsiny+2x³-2x+y^4=C。

回答2:

第一题是dx/dy还是dy/dx?