log以根号3为底2的对数=a,求log以12为底3的对数?

2024-11-05 01:18:08
推荐回答(3个)
回答1:

log(m)n=lgn/lgm。(m是底数) log以根号3为底2的对数=a,求log以12为底3的对数 a=log(√3)2 =lg2/lg3^(1/2) =2lg2/lg3 log(12)3=lg3/lg12=lg3/(2lg2+lg3)=1/(2lg2/lg3+1)=1/(a+1) 已知log以3为底2的对数=a,3的b次方=7,求log以12为底56的对数 a=lg2/lg3;b=log(3)7=lg7/lg3。b/a=lg7/lg2. log(12)56=lg56/lg12 =(lg7+lg8)/(lg3+lg4) =(lg7+3lg2)/(lg3+2lg2) =(lg7/lg2+3)/(lg3/lg2+2) =(b/a+3)/(1/a+2) =(3a+b)/(2a+1)

回答2:

π>3
所以log3(π)>1
而b个c真数都小于底数
所以都小于1且大于0
b/c=(lg√3/lg2)/(lg√2/lg3)
=(1/2*lg3/lg2)/(1/2*lg2/lg3)
=lg²3/lg²2>1
所以b>c
所以a>b>c

回答3:

lon12 56=(log3 56)/(log3 12)=(log3 7*8)/(log3 3*4)=(log3 7+log3 8)/(log3 3 +log3 4) =(b+log3 2^3)/(1+log3 2^2)=(b+3a)/(1+2a)