x=tant,dx=sec²tdt∫dx/[(2x^2+1)(x^2+1)^(1/2) ]=∫sec²tdt/[(2tan²t+1)sect]=∫dt/[cost((2sin²t/cos²t)+1)]=∫costdt/[((2sin²t+cost²)]=∫[1/(1+sin²t)]d(sint)=arctan(sint)+C三角替换有sint=x/√(1+x²)所以原不定积分∫dx/(2x^2+1)(x^2+1)^(1/2) =arctan[x/√(1+x²)]+C