求(1⼀(1-x^2))(ln((1+x)⼀(1-x)))的不定积分

2024-11-08 02:45:43
推荐回答(1个)
回答1:

先令(1+x)/(1-x)=u,则变形后得x=(u-1)/(u+1),故dx=d(u-1)/(u+1)=2/[(u+1)^2]du
原式中1/(1-x^2)则代入u,化为:(u+1)^2/4u
故原式整体化为:∫2/[(u+1)^2]*(u+1)^2/4u*ln
u
du
=∫1/(2u)ln
u
du
=1/2∫ln
u
dln
u
=1/4*(ln
u)^2+c
=1/4*(ln
(1+x)/(1-x))^2+c