求两个积分已经详细步骤

是求两个积分以及详细步骤∫1⼀(y^2+x^2)^3⼀2 dx∫x⼀(y^2+x^2)^3⼀2 dx
2024-11-01 17:31:40
推荐回答(2个)
回答1:

说明:如果y不是关于x的函数,解法如下。
解:设x=ytant,则sint=x/√(x²+y²),cost=y/√(x²+y²),dx=ysec²tdt
于是,有
∫1/(y²+x²)^3/2 dx=∫ysec²tdt/(y³sec³t)
=1/y²∫costdt
=sint/y²+C (C是积分常数)
=(x/√(x²+y²))/y²+C
=x/(y²√(x²+y²))+C;
∫x/(y^2+x^2)^3/2 dx=∫ytantysec²tdt/(y³sec³t)
=1/y∫sintdt
=-cost/y+C (C是积分常数)
=-(y/√(x²+y²))/y+C
=-1/(√(x²+y²))+C。

回答2:

三角代换即可:
令x=cosa,y=sina
代入
注意dx=-sina