设二维随机变量(X,Y)的概率密度为:f(x,y)=4.8y(2-x)[0≤x≤1,0≤y≤x],0[其他],求边缘概率密度

请问发Y(y)为什么从y到1
2024-11-16 16:09:13
推荐回答(2个)
回答1:

解:

f(y)=

∫(-∞到∞)f(x,y)dx

=∫(y到1)4.8y(2-x)dx

=2.4xy(4-x)|(y到1)

=2.4y(3-4y+y²) (0

关于x的边际密度函数Px(x):

当0≤x≤1时

Px(x)=∫f(x,y)dy,关于y从-∞积到+∞=∫(2-x-y)dy,关于y从0积到1

其中原函数为:(2*y-x*y-y²/2)

Px(x)=(2-x-½)-0=3/2-x

当x>1或者x<0时

Px(x)=0

关于y的边际密度函数Py(y):

当0≤x≤1时

Py(y)=∫f(x,y)dx,关于x从-∞积到+∞=∫(2-x-y)x,关于x从0积到1

其中原函数为:(2*x-x²/2-x*y)

Py(y)=(2-½-y)-0=3/2-y

当y>1或者y<0时

Py(y)=0

扩展资料

求边缘概率密度的方法:

求y的边缘密度,对x作全积分,求x的边缘密度,对y作全积分,全部是常数范围很容易判断,如果有非矩形范围的联合密度函数。

例:

概率转化为面积:

联合概率P(X=a,Y=b),满足X=a且Y=b的面积,边缘概率P(X=a),不考虑Y的取值,所有满足X=a的区域的总面积,条件概率P(X=a|Y=b),在Y=b的前提下,满足X=a的面积(比例)。

回答2:

见图