∫[2,+∞]1/(1-x^2) dx =1/2∫[2,+∞][1/(1-x) -1/(1+x)]dx =-1/2∫[2,+∞][ 1/(1+x)-1/(x-1)]dx =-1/2[ln(1+x)-ln(x-1)][2,+∞] =-1/2ln[(1+x)/(x-1)][2,+∞] =1/2*ln3 ∫[-∞,+∞]1/(x2+2x+2) dx =∫[-∞,+∞]1/[(x+1)^2+1] dx =arctan(x+1)[-∞,+∞] =π