我说下思路吧,具体计算比较繁琐,希望对你有帮助;
1、把y和z看成x的函数,将连等式化成2个等式,与第2题类似,得到一个微分方程组;
2、采用变换的方法解这个方程比较简单,推荐用拉普拉斯变换,通过变换后的方程组解得x和y的拉普拉斯变换,进行反变换就行了;
3、也用第2题的办法,不过没有初始条件,解出的结果含有参数;
4、借助y=z+ y1(x),特解为y1(x),可知z是dy/dx=P(x) y²+Q(x)y的解,方程两边同除以y²,方程可以简化成1/y对x的一阶方程,用公式解之;
5、两边对x求一阶导数,再求y对x的一阶方程;
6、这个用分离变量法,设u(x,t)=X(x)T(t),代进去计算就行了,这个是一维热辐射问题的方程,这样做是可行的;
用matlab中的dsolve命令
Examples
dsolve('Dy = a*x') returns
C1*exp(a*t)
dsolve('Df = f + sin(t)') returns
-1/2*cos(t)-1/2*sin(t)+exp(t)*C1
dsolve('(Dy)^2 + y^2 = 1','s') returns
[ -1]
[ 1]
[ sin(s-C1)]
[ -sin(s-C1)]
dsolve('Dy = a*y', 'y(0) = b') returns
b*exp(a*t)
dsolve('D2y = -a^2*y', 'y(0) = 1', 'Dy(pi/a) = 0') returns
cos(a*t)
dsolve('Dx = y', 'Dy = -x') returns
x: [1x1 sym]
y: [1x1 sym]
y = dsolve('(Dy)^2 + y^2 = 1','y(0) = 0') returns
y =
sin(t)
-sin(t)
帮你查的
Examples
dsolve('Dy = a*x') returns
C1*exp(a*t)
dsolve('Df = f + sin(t)') returns
-1/2*cos(t)-1/2*sin(t)+exp(t)*C1
dsolve('(Dy)^2 + y^2 = 1','s') returns
[ -1]
[ 1]
[ sin(s-C1)]
[ -sin(s-C1)]
dsolve('Dy = a*y', 'y(0) = b') returns
b*exp(a*t)
dsolve('D2y = -a^2*y', 'y(0) = 1', 'Dy(pi/a) = 0') returns
cos(a*t)
dsolve('Dx = y', 'Dy = -x') returns
x: [1x1 sym]
y: [1x1 sym]
y = dsolve('(Dy)^2 + y^2 = 1','y(0) = 0') returns
y =
sin(t)
就会这些