数量矩阵,指的是设I是单位矩阵, k是任何数,则k*I称为数量矩阵。换句话说,数量矩阵就是对角线上元素都是同一个数值,其余元素都是零。数量矩阵有且只有一个n重特征值。
性质:
若任一n维非零向量都是n阶矩阵A的特征向量,则A是数量矩阵。又叫纯量矩阵。也是一种对角矩阵,它的对角线上的值相同。
同时,这也是一个上三角矩阵、下三角矩阵和阶梯矩阵。数量矩阵必能相似对角化,数量矩阵有且只有一个n重特征值。
扩展资料
一、矩阵的作用:
矩阵提供了一种更简洁的描述问题的方式,采用矩阵这一方法表示问题进行计算时,对于矩阵有一套相应的运算规则,这就是矩阵计算。而采用矩阵计算出来的结果,必须是与不利用矩阵计算得出的结果相同的,这是矩阵计算推导过程中要遵循的准则。
二、矩阵的乘法:
两个矩阵的乘法仅当第一个矩阵A的列数和另一个矩阵B的行数相等时才能定义。如A是m×n矩阵和B是n×p矩阵,它们的乘积C是一个m×p矩阵。
1、它的一个元素:
并将此乘积记为:
2、例如:
参考资料来源:百度百科-数量矩阵
数量矩阵,指的是设I是单位矩阵, k是任何数,则k*I称为数量矩阵。换句话说,数量矩阵就是对角线上元素都是同一个数值,其余元素都是零。数量矩阵有且只有一个n重特征值。
性质:
若任一n维非零向量都是n阶矩阵A的特征向量,则A是数量矩阵。又叫纯量矩阵。也是一种对角矩阵,它的对角线上的值相同。
同时,这也是一个上三角矩阵、下三角矩阵和阶梯矩阵。数量矩阵必能相似对角化,数量矩阵有且只有一个n重特征值。
数量矩阵的应用
图像处理:在图像处理中图像的仿射变换一般可以表示为一个仿射矩阵和一张原始图像相乘的形式。
线性变换及对称:线性变换及其所对应的对称,在现代物理学中有着重要的角色。
量子态的线性组合:1925年海森堡提出第一个量子力学模型时,使用了无限维矩阵来表示理论中作用在量子态上的算子。
简正模式:矩阵在物理学中的另一类泛应用是描述线性耦合调和系统。这类系统的运动方程可以用矩阵的形式来表示,即用一个质量矩阵乘以一个广义速度来给出运动项,用力矩阵乘以位移向量来刻画相互作用。
几何光学:在几何光学里,可以找到很多需要用到矩阵的地方。几何光学是一种忽略了光波波动性的近似理论,这理论的模型将光线视为几何射线。
参考资料:百度百科—数量矩阵
数量矩阵
又称标量矩阵
设I是单位矩阵, k是任何数, 则k*I称为数量矩阵。
换句话说,数量矩阵就是对角线上元素都是同一个数值,其余元素都是零。 一定要注意其余的元素都是零,
简单来说,就是主对角线上的数都相同
数量矩阵
又称标量矩阵
消息来源:中华隐士黑客联盟