大一高数:设f(x)=limn→∞(x∧2n-1+ax+b)⼀x∧2n+1为连续函数求a,b

2024-11-22 21:18:09
推荐回答(4个)
回答1:

|f(x)=lim(n趋近于无穷)(x^(2n-1)+ax^2+bx)/(x^2n+1)。

当|x|1时,f(x)的分子分母同时除以x^2n。

f(x)=lim(n趋近于无穷)[1/x+a/x^(2n-2)+b/x^(2n-1)]/[1+1/x^2n]。

1/x^(2n-2)、1/x^(2n-1)、1/x^2n趋近于0,此时f(x)=1/x。

因此,需考虑-1和1这两个点是否连续,即:

当x负向趋于-1时,1/x=-1。

当x正向趋于-1时,ax^2+bx=a-b。

所以,a-b=(a-b-1)/2=-1,即a-b=-1。

同理,考虑趋于1的情况可得:a+b=(a+b+1)/2=1^-1=1,即a+b=1。

因此,a=0,b=1。

相关内容解释:

函数在数学上的定义:给定一个非空的数集A,对A施加对应法则f,记作f(A),得到另一数集B,也就是B=f(A)。那么这个关系式就叫函数关系式,简称函数。

简单来讲,对于两个变量x和y,如果每给定x的一个值,y都有唯一一个确定的值与其对应,那么我们就说y是x的函数。其中,x叫做自变量,y叫做因变量。

回答2:

简单计算一下即可,答案如图所示

回答3:

f(x)=lim(n趋近于无穷)(x^(2n-1)+ax^2+bx)/(x^2n+1)
当|x|1时,f(x)的分子分母同时除以x^2n
f(x)=lim(n趋近于无穷)[1/x+a/x^(2n-2)+b/x^(2n-1)]/[1+1/x^2n]
1/x^(2n-2)、1/x^(2n-1)、1/x^2n趋近于0,此时f(x)=1/x
因此,需考虑-1和1这两个点是否连续,即:
当x负向趋于-1时,1/x=-1;
当x正向趋于-1时,ax^2+bx=a-b
所以,a-b=(a-b-1)/2=-1,即a-b=-1
同理,考虑趋于1的情况可得:a+b=(a+b+1)/2=1^-1=1,即a+b=1,
因此,a=0,b=1.

回答4:

同问是为什么要取1和-1两个点,请问你解决了吗