万有引力是由于物体具有质量而在物体之间产生的一种相互作用。它的大小和物体的质量以及两个物体之间的距离有关。物体的质量越大,它们之间的万有引力就越大;物体之间的距离越远,它们之间的万有引力就越小。
两个可看作质点的物体之间的万有引力,可以用以下公式计算:F=GmM/r^2,即
万有引力等于引力常量乘以两物体质量的乘积除以它们距离的平方。其中G代表引力常量,其值约为6.67×10的负11次方单位
N·m2
/kg2。为英国科学家
卡文迪许通过扭秤实验测得。
万有引力的推导:若将行星的轨道近似的看成圆形,从开普勒第二定律可得行星运动的角速度是一定的,即:
ω=2π/T(周期)
如果行星的质量是m,离太阳的距离是r,周期是T,那么由运动方程式可得,行星受到的力的作用大小为
mrω^2=mr...万有引力是由于物体具有质量而在物体之间产生的一种相互作用。它的大小和物体的质量以及两个物体之间的距离有关。物体的质量越大,它们之间的万有引力就越大;物体之间的距离越远,它们之间的万有引力就越小。
两个可看作质点的物体之间的万有引力,可以用以下公式计算:F=GmM/r^2,即
万有引力等于引力常量乘以两物体质量的乘积除以它们距离的平方。其中G代表引力常量,其值约为6.67×10的负11次方单位
N·m2
/kg2。为英国科学家
卡文迪许通过扭秤实验测得。
万有引力的推导:若将行星的轨道近似的看成圆形,从开普勒第二定律可得行星运动的角速度是一定的,即:
ω=2π/T(周期)
如果行星的质量是m,离太阳的距离是r,周期是T,那么由运动方程式可得,行星受到的力的作用大小为
mrω^2=mr(4π^2)/T^2
另外,由开普勒第三定律可得
r^3/T^2=常数k'
那么沿太阳方向的力为
mr(4π^2)/T^2=mk'(4π^2)/r^2
由作用力和反作用力的关系可知,太阳也受到以上相同大小的力。从太阳的角度看,
(太阳的质量M)(k'')(4π^2)/r^2
是太阳受到沿行星方向的力。因为是相同大小的力,由这两个式子比较可知,k'包含了太阳的质量M,k''包含了行星的质量m。由此可知,这两个力与两个天体质量的乘积成正比,它称为万有引力。
如果引入一个新的常数(称万有引力常数),再考虑太阳和行星的质量,以及先前得出的4·π2,那么可以表示为
万有引力=(GmM)/(r^2)
两个通常物体之间的万有引力极其微小,我们察觉不到它,可以不予考虑。比如,两个质量都是60千克的人,相距0.5米,他们之间的万有引力还不足百万分之一牛顿,而一只蚂蚁拖动细草梗的力竟是这个引力的1000倍!但是,天体系统中,由于天体的质量很大,万有引力就起着决定性的作用。在天体中质量还算很小的地球,对其他的物体的万有引力已经具有巨大的影响,它把人类、大气和所有地面物体束缚在地球上,它使月球和人造地球卫星绕地球旋转而不离去。
当在某星球表面作圆周运动时,可将万有引力看作重力,既有mg=(GmM)/(r^2)
,此时有GM=g(r^2),为黄金代换公式。且有mrω^2=mr(4π^2)/T^2=mg。(此结论仅用于星球表面)
万有引力定律是在开普勒发现行星第三运动定律,即周期定律是发现的,你的课本是什么教材,在江苏省现在的高三的那个高一教材好象说得很明白的。不妨借来看看。当然,如果你有需要,我也可以帮你讲。
开普勒第三定律a^3/T^2对任何行星都是相等的。a是行星椭圆运动轨道的半长轴,T是运动周期。然后牛顿在简单的圆周运动上考虑,有加速度v^2/a,而万有引力F=mv^2/a=m(2paia/T)^2/a
=m4pai^2a/T^2=m4pai^2(a^3/T^2)(1/a^2)
你发现了吗,对于不同的a,力与m/a^2成正比,因为a^3/T^2是一个常量,所以你的教科书上这么写,这么来的。
很累,给点加分不为过吧?
上面只是推导,真正要证明万有引力的正确性需要高等数学,我就不多说了,有兴趣的到我的博客看看。
这是中学基础的万有引力定律推导,把天体运动看做圆周运动的简单推导。
根据开普勒的三定律以及牛顿第三定律得出。
具体如下;f引=
f向=mw2r=mv2/r再由线速度与周期的关系得到
f引=m(2πr/t)2/r=
4π2mr/t2
f引=4π2mr/t2=
4π2(r3/t2)
m/r2
f引=4π2km/r2
所以可以得出结论:太阳对行星的引力跟行星的质量成正比,跟行星到太阳的距离的二次方成反比。
即:f∝m/r2
牛顿根据牛顿第三定律大胆的猜想:既然太阳对行星的引力与行星的质量成正比,也应该与太阳的质量成正比。
f引
∝
mm/r2
写成等式:f引=
gmm/r2
就这样了。