用对数求导法求下列函数的导数y=(3-x)^4√(x+2)⼀(x+1)^5

2024-11-02 06:25:21
推荐回答(2个)
回答1:

lny=ln[(3-x)^4]√(x+2)/嫌兄毁(x+1)^5]

1/y*y'尘销=4ln(3-x)+1/2ln(x+2)-5ln(x+1)
1/y*y'=4*(1/3-x)+1/2*(1/x+2)-5*(x+1)
y'=(3-x)^4]√(x+2)/(x+1)^5[4*(1/3-x)+1/2*(1/芹备x+2)-5*(x+1)]
希望对你有帮助

回答2:

lny = 4ln(3-x) +0.5ln(x+2) - 5ln(x+1)
y'/y = 4/(x-3)+1/2(x+2)-5/(x+洞拿大1)
y'= [纳竖4/(x-3)+1/2(x+2)-5/(x+1)](3-x)^4√(x+2)/敏蔽(x+1)^5