(1)∵该抛物线过点C(0,2),
∴可设该抛物线的解析式为y=ax2+bx+2.
将A(-1,0),B(4,0)代入,
得 ,
解得 ,
∴抛物线的解析式为:y=-x2+x+2.
(2)存在.
由图象可知,以A、B为直角顶点的△ABE不存在,所以△ABE只可能是以点E为直角顶点的三角形.
在Rt△BOC中,OC=2,OB=4,
∴BC==2.
在Rt△BOC中,设BC边上的高为h,则×2h=×2×4,
∴h=
.
∵△BEA∽△COB,设E点坐标为(x,y),
∴=,
∴y=±2
将y=2代入抛物线y=-x2+x+2,
得x1=0,x2=3.
当y=-2时,不合题意舍去.
∴E点坐标为(0,2),(3,2).
(3)如图2,连结AC,作DE⊥x轴于点E,作BF⊥AD于点F,
∴∠BED=∠BFD=∠AFB=90°.
设BC的解析式为y=kx+b,由图象,得
,
∴,
yBC=-x+2.
由BC∥AD,设AD的解析式为y=-x+n,由图象,得
0=-×(-1)+n
∴n=-,
yAD=-x-.
∴-x2+x+2=-x-,
解得:x1=-1,x2=5
∴D(-1,0)与A重合,舍去;
∴D(5,-3).
∵DE⊥x轴,
∴DE=3,OE=5.
由勾股定理,得BD=.
∵A(-1,0),B(4,0),C(0,2),
∴OA=1,OB=4,OC=2.
∴AB=5
在Rt△AOC中,Rt△BOC中,由勾股定理,得
AC=