圆周率是用圆的周长除以它的直径计算出来的。“圆周率”即圆的周长与其直径之间的比率。
1、圆周率是一个超越数,它不但是无理数,而且比无理数还要无理。无理数有一个特点,就是小数部分是无限的,而且是不循环的。比如0.9的循环小数,这个虽然无限,但是重复的。而圆周率则是无限,而且数字不会重复,因此圆周率看起来非常长的一串数字。
2、阿基米德是最早得出圆周率大约等于3.14的人。传说在他临死时被罗马士兵逼到一个海滩,还在海滩上计算圆周率,并且对士兵说:“你先不要杀我,我不能给后世留下一个不完善的几何问题。”阿基米德计算圆周率的方法是双侧逼近:使用圆的内接正多边形和外切正多边形的周长来近似圆的周长。正多边形的边数越多,多边形周长就越接近圆的边长。
3、以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年Lambert证明了圆周率是无理数,1882年Lindemann证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。现在的人计算圆周率,多数是为了验证计算机的计算能力,还有,就是为了兴趣。
我们日常常用的圆周率π,你知道是怎么来的吗?你知道3月14日在国际上是什么日子吗?今天吕老师带大家一探究竟。
圆周率是用圆的周长除以它的直径计算出来的。
“圆周率”即圆的周长与其直径之间的比率。关于它的计算问题,历来是中外数学家极感兴趣、孜孜以求的问题。德国的一位数学家曾经说过:“历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展的一个标志。”
我国古代在圆周率的计算方面长期领先于世界水平,这应当归功于魏晋时期数学家刘徽所创立的新方法——“割圆术”。
所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。这个方法,是刘徽在批判总结了数学史上各种旧的计算方法之后,经过深思熟虑才创造出来的一种崭新的方法。
圆周率用希腊字母 π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。
在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
扩展资料:
圆周率( )一般定义为一个圆形的周长( )与直径( )之比: ,或直接定义为单位圆的周长的一半。由相似图形的性质可知,对于任何圆形, 的值都是一样,这样就定义出常数 。
注意:将 定义为单位圆的周长的一半是有意义的,这是因为从现代数学的角度来看,直径为d、半径为r的圆的周长C由以下积分给出:
即
其中 是单位圆周的周长(C的表达式中取r=1即得)。若定义 ,则 ,与我们熟知的周长公式相符。
而半径为r的圆的面积S由以下积分给出:
令 ,由定积分的换元法可得:
我们得到关系式:
这样一来也得到了我们熟知的圆面积公式
第二个做法是,以圆形半径为边长作一正方形,然後把圆形面积和此正方形面积的比例定为 ,即圆形之面积与半径平方之比。
参考资料:百度百科---圆周率
我们都知道圆周率约等于3.14,但这个数字来的可真不容易,从古代开始全世界科学家,都对圆周率十分痴迷,试图能够把圆周率算清楚,而我们国家在这方面的成就,简直就是学霸级的存在。