船的速度v=v0/cosθ 加速度a=v0²h²/s³
如图:
cosθ=s/√(s²+h²)
v=v0/cosθ
设极小时间△t,
a=(v'-v)/△t
=((v0/cos(θ+△θ))-(v0/cosθ))/△t
=((v0/(cosθcos△t-sinθsin△t))-v0/cosθ)/△t
△t是一个极小值故sin△t=△t,cos△t=1
故sin△t=v'sinθ△t/√(s²+h²)=tanθv0△t/√(s²+h²)
带入a,得a=v0²h²/s³
(其中用到了1/(x-s)=(x+s)/x²,s为一个极小值时,(就是忽略s²)微元法这个用途很广泛)
评析:
加速度题目考法宽泛,在最简单的匀加速直线运动中,加速度的大小等于单位时间内速度的增量。若动点的速度v1经t秒后变成v2,则其加速度可表示为:
动点Q做一般空间运动时,速度矢量的变化和所经时间△t的比,称为△t时间内的平均加速度,记为a平:
兄弟,我想知道这题只是在拉的瞬间结果,如何求任意时刻呢? 与时间t的关系?
已经解决了,我就不献丑啦