解:
an=n+1/2^(n+1),
则
Sn=a1+a2+.+an
=(1+2+.+n)+(1/2^2+1/2^3+.+1/2^(n+1)) (分别是等差数列和等比数列)
=(n+1)n/2+1/2^2(1-1/2^n)/(1-1/2)
=(n+1)n/2+1/2-1/2^(n+1)。
(n+1)=an+2^n
a(n+1)-an=2^n
an-a(n-1)=2^(n-1)
.....................
a2-a1=2^1=2
等式左边相加,等式右边相加得
a(n+1)-a1=2+....2^(n-1)+2^n=2(2^n-1)/(2-1)=2^(n+1)-2
a(n+1)=2^(n+1)-2+a1
不知a1=?