如何证明平行线分线段成比例定理

2024-11-20 17:34:25
推荐回答(1个)
回答1:

  平行线分线段成比例定理的证明过程 证明: 过点A做直线AC//GN,如图所示,连接CD、BE,作BK⊥AC于K,CH⊥AB于H, 设直线DE和BC之间的距离为h,则: S△ABC:S△ADC =1/2AB*CH:1/2AD*CH = AB:AD S△ABC:S△AEB =1/2AC*BK: 1/2AE*BK = AC:AE S△DBC=1/2BC*h=S△EBC(同底等高) ∵S△ADC=S△ABC-S△DBC   S△AEB=S△ABC-S△EBC=S△ABC-S△DBC ∴S△ADC=S△AEB ∴S△ABC:S△ADC=S△ABC:S△AEB ∴AB:AD=AC:AE  即:(AD+BD):AD=(AE+EC):AE  即:1+BD:AD=1+EC:AE ∴BD:AD=EC:AE  即:AD:BD=AE:EC