分解因式:
左边=-(3x-4)(x+1)/(x-2)(x+1)
=-(3x-4)/(x-2)
所以原式可化为:(移项:右边移到左边,通分)
[x(1-x)]/(x-2)>=0
x(x-1)(x-2)<=0
穿根:解集为:(0,1)U(2,正无穷)
(3x^2-x-4)/(2+x-x^2)≥x-2
(3x-4)(x+1)/[(x-2)(x+1)]≥x-2
x(x+1)(x-1)/[(x-2)(x+1)]≥0
x(x+1)(x-1)≥0,(x-2)(x+1)>0
或x(x+1)(x-1)≤0,(x-2)(x+1)<0
解之得:x>2,0≤x≤1
∴解集为[0,1]∪(2,+∞)
2+x-x^2中方程有根,因为分母必不等于零,所以X可取除2和-1以外所有实数,
3x^2-x-4=(3X-4)*(X+1)
2+x-x^2=(2-X)*(X+1)
化简得(3X-4)/(2-X)=X-2
移项得X=X^2
解得X=0或X=1